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ABSTRACT

Let (XiY l) .. (XnYn) be iid rv's with pdf f(x,y) and let m(x)

E(YIX = x) = fyf(x,y)dy/fx(x) be the regression function of Y on X. The

function m(x) is estimated by mn (x) a solution of (nh) I  K((x-X)/h)T(Y.-*) 0

hi=lfor some odd and bounded Y-function making mn (x) a robust estimate of m(x).

-,Probabilities of maximal deviation of Imn(x) - m(x) are computed in a

similar way as in Bickel and Rosenblatt (1973) for density estimation and

in Johnston (1982) for nonparametric regression function estimation.
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1. BACKGROUND AND INTRODUCTION

Nadaraya (1964) and Watson (1964) independently proposed the following

kernel estimator

n nnll x (nhn)-l n1 n~
(1.1) m*(x) I K((x-Xi)/hn)Yi/[(nhn 

j  K((x-X-)1hn) ]

of the regression function m(x) = fy f(xy)dy/fx(x) where fx(x) denotes the

marginal density of X,K ') is a kernel and {hn ) is a sequence of positive

constants ("bandwidth"). Basically this estimator averages the Y's around

X = x motivated from the integral formula for m(x) above. The numerator is

a weighted local average of the Y's while the denominator is a density esti-

mate of fx(x).

It is clear that occasional outliers generated by heavy tailed condi-

tional densities f(ylx) introduce smooth peaks and troughs in the estimated

curve m*(x). Such outliers occur quite often in practice. (Ruppert et al.,

1982 Figure 7 or Bussian et al., 1982). To avoid this misleading property

of m*(x) due to spiky Y-observations we introduce a robust estimate, then

M-smoother, m n(x) as the solution ofn

1l n(1.2) (nhn) K((x-Xi)/hn)T(Y i- ") = 0,
i=l 11

where T denotes a bounded, odd and continuous function. Note that if Y(u) =

u, then mn is the Nadaraya-Watson estimator m* . Bias and variance rates forn n
mn(x) with K as the uniform window where obtained by Stuetzle and Mittal (1979),

robustness properties, consistency and asymptotic normality of mn (X) were

considered by H~rdle (1982). For the case of nonrandom design, i.e. Xi attains

fixed values, we may refer to H~rdle and Gasser (1982). In this paper we show that



(1.3) P(2fo log n) [ sup 1(mn(t) - m(t)).r(t)f/X(K) - dn] xnn

exp(-2 exp(-x))

where ,, r(t), A(K), dn are suitable scaling parameters.

The result (1.3) improves upon that of Johnston (1982) in a number of

ways. First, Johnston obtains results like (1.3), but for estimates different

from the Nadaraya-Watson estimator (1.1); our result (1.3) of course applies

to the Nadaraya-Watson estimator as a special case. Secondly, (1.3) holds for

a much broader class of estimators. Finally, we obtain (1.3) under assumptions

weaker than those needed by Johnston.

2. ASSUMPTIONS AND RESULTS

We write h for the bandwidth h from here on unless there is no need ton

do so. We make use of the following assumptions.

(Al) the kernel K(-) is positive has compact support [-A,A] and is

continuously differentiable.

(A2) (nh)- (log n) 3/2 _ 0 (n log n) h5 - 0

(nh 3)- (log n)2 < M, M a constant

(A3) h-3 (log n) f f (y)dy = 0(1), f (y) the marginal density

jyl> an y Y

,an1=l a sequence of constants tending to infinity as n

(A4) inf fq(t)j , qo > 0, where q(t) = E(H"(Y-m(t))jX=t)-fx(t)
0.t.-l

(A5) the regression function m(x) is twice continuously differentiable, the

conditional densities f(yjx) are symmetric for all x, T is piecewise

twice continuously differentiable.

We need some more definitions before we discuss the assumptions.
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Def i ne

S2(t) = E(T (Y-m(t))IX=t)
in

H (t) = (nh) K((x-Xi)/h)Y(Yi-m(t)) In i=l 1 1

D (t) = (nh) K((x-Xi)/h)Y'(Yi-m(t)).

2 i=l 11

We further assume that u (t) and fx(t) are differentiable.

Assumption (Al) on the compact support of the kernel could possibly be

relaxed introducing a cutoff technique as Csbrgo and Hall (1982) for density

estimators. Assumption (A2) has purely technical reasons: to keep the bias down

and to ensure the vanishing of the nonlinear remainder terms. Assumption

(A3) appears in a somewhat modified form also in Johnston's paper (1982).

When we want to apply the following theorem to the Nadaraya-Watson estimator

m*(x) we have actually to restate (A2) as h- 3 (log n ) f y2f (y)dy (which
n yI>a n  y

is assumption Al in Johnston (1982)). Assumption (A5) stating the symmetry

of the conditional densities is common in robustness considerations (Huber,

1981). It nuarantees that the only solution of fY(y-.)f(ylx)dy = 0 is m(x)

E(YIX=x). If we had skew distributions then we would no longer estimate the

conditional mean but rather a conditional ouantile such as the median.

Theorem

Let h = n-  1/5 < 6 < 1/3 and X(K) = Aa
Leth f (udu and

_A

dn = (26 log n) + (26 log n)- {log(cl(K)/0 ) + [log 6 + log log n]l

if cl(K) = K2(A) + K2(-A)/[2A(K)] > 0

dn = (26 log n) + (26 log n)-  {log (c2 (K)/21)}

A
otherwise with c2(K) = f[K'(u)]2 du,'[2X(K)]

-A

Then (1.3) holds with
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r(t) = (nh)'(j(t)[,2(t)fx t)]-

This theorem can be used to construct uniform confidence intervals for the

regression function as stated in the following corollary.

Corollarv: Assuming the theorem above holds, an approximate (l--.,)x 100',

confidence band over [0,1] is

mn(t) -± (nh)-Ili2(t)fxt)A(K)]2  q- (t)[dn+c(.,)( 2, log n)- ] [ (K)]jl

where c(c) = log 2 - logflog(l-a)j.

The proof is essentially based on a linearization argument due to Taylor series

expansion. The leading linear term will then be approximated in a similar way

as in Johnston (1982), Bickel and Rosenblatt (1973). The main idea behind the

proof is a strong approximation of the empirical process of {(Xi,Y) by a
i 1 I

sequence of Brownian bridges (with two dimensional time) as provided Tusnady

(1977).

It follows by Taylor expansions applied to the defininq equation (1.2) that

(2.1) mn(t) - m(t) = (Hn (t)-EHn (t))/q(t) + Rn(t)

where [H n(t)-EH n(t)]/q(t) is the leading linear term and

(2.2) Rn (t) = Hn(t)[q(t)-Dn(t)]/[Dn(t).q(t)] + EHn (t)/q(t)

n ( )

+ (mn (t)-m(t))2 . [Dn 1. (nh) - I K((x-Xi)/h)4i'"(Yi-m(t)+r (t)),
i=l

jr n )(t)j , Im n(t)-m(t) .

is the remainder term. In the third section it is shown (Lemma 3.1) that

{ RnII = sup IRn(t) = op((nh log n)- ).

Furthermore the rescaled linear part

Yn(t) = (nh) [i2(t)fx(t)]- (Hn(t) - EHn(t))



is approximated by a sequence of Gaussian processes, leading finally to the

following process

Y5 ,n(t) h fK((t-x)/h) dW(x),

as in Bickel and Rosenblatt (1973).

We also need the Rosenblatt transformation (Rosenblatt, 1952).

T(x,y) = (FxIy(xly), Fy(y))

which transforms (Xi ,Yi) into T(Xi Y.) =(X',Y!) mutually independent uniform11

rv's. With the aid of this transformation Theorem 1 of Tusnady (1977) may be

applied to obtain the following lemma.

Lemma 2.1: On a suitable probability space there exists a sequence of

Brownian bridges Bn such that

supiZn(xy)-Bn(T(xy)I = O(n- (log n) 2) a.s.,
x y

where Z n(x.y) = n [Fn(x,y)-F(x,y)] denotes the empirical process of {(Xi ,Yi),
n

n i=l•

Before we define the different approximating processes let us first rewrite

Yn(t) as a stochastic integral with respect to the empirical process Zn(x,v).

Yn(t) = h 2 (t)- ffK((t -x)/h)T(y-m(t))dZn(x,y), 0'(t) = a2(t) fx(t).

The approximating processes are now

Yo,n(t) = (hg(t))- IK((t-x)/h) ,(y-m(t))dZn(x,y),
In

where Fn = {JyI<- an}' a(t) = E(Y 2 (y-m(t))-I(!yI<_ an) Xt )fx(t)

Yn(t) = K((t-x)/h)(Y-m(t)) dBn(T(xy)),
n

{Bn} being the sequence of Brownian bridges from Lemma 2.1.
Y2 ,n(t) : (hg(t))- ffK((t -x)/h)T(y -m(t)) dWn(T(x,y))

r n

{W n } being the sequence of Wiener processes satisfying

B n(x',y') W n(x', Y') - x'y'Wn (1,l)

n...n n
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Y 3,n(t) = (hg(t))-"ffK((t-x)/h):(y-nm(x)) dWn(T(x y))
3n

Y4 n(t) = (hg(t))- fg(x) K((t-x)/)dW(x)

Y (t) = h- fK((t-x)/h)dW(x),

!(-)', being the Wiener process on

Lemmata 3.2 to 3.7 ensure that all these processes have the same limit distribu-

tions. The results then follows from the following lemimoa

Lemma 2.2_(Bickel and Rosenblatt (1973)). Let d n , (K), as in the th em.

Let

Ys~ (t) = h fK((t-x)/h) dW(x).

Then
2-x

P((2,, log n) sup I Y5 (t )
-

/ [N(K )]  dn} < x) e 2e

3. PROOFS

.,Ie show first that JJRni =  sup Rn(t)j vanishes asymptotically with the

05t<l

desired rate (nh log n)-

Lemma 3.1: For the remainder term R n(t) defined in (2.2) we have

(3.1) I l Rnli= o P((nh log n) " )

Proof: First we have by the positivity of the kernel K and I "!-: C

Rn' " [ inf (ID n q( ( t))]- 11 HnI n i q-Dnil +1i D nil " EHnlI
O<t'l

+ C1  *Ijmn-m121 [ inf IDn(t)1I- 1 .I f l l

where fn 1n)_
w = (nh) K((x-X )/h).i=li '

The desired result (3.1) will then follow if we prove the followinq:

(3.2) 11 H nil O (n- 4h 4 .(log n)- ) (3.2)
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(3.3) (-D 0 (n-LhLog n)

(3.4) PH uh)

(3.5) 111 111! 2 ((nh)-"(og n) 2).

Define U n (t) "h '(log n)2[Hn (t)-EHn(t)] .

We first show that Un(t) R 0 for all t. This follows from Markov's inequality

since n

Un(t) = f Un (t)

where Ui  (t) 
= n- 3/4h- 3/4(log n) [K((t-X i )/h)4't(Y.-m(t))-EK( t-X)/h). :(y-m(t))],1 ,n

are iid rv's and thus

p(lU n(t) --)  --2 n- 2h- (log n).h- IEK 2 ((tX)/h)' '2 (y-m(t)).

The RHS of this inequality tends to zero since

h1 E 2 ((-)h'2 1-r2 2
hEK((t-X)/h (Y-m(t)) = h-jK ((t-u)/h)E(2 (Y-,,(t)):X=u)fx(u)du

2 (t).fx(t).K2(u)du

2X
by continuity of r-2(t) and fx(t).

Next we show the tiqhtness of Un (t) using the following moment condition

(Billingsley, 1968, Th. 15.6)

E .U (t)-U (t l)1 -1U (t 2)-Un(t ) l - C2.(t2-tl )2

where C2 is a constant.

By the Schwarz inequality,

E! n(t)-U n(t1 )1-IUn(t 2 )-Un(t)V

1E[Un(t)-Un (t 1 )]2
. E[Un(t 2)-Un(t)]2}

It suffices to consider only the term E{U (t)-U (tl)]2
n nl

Using the Lipschitz continuity of K,P,m and assumption (A2) we have

SE [Un (t)-Un(t ) 12 i L
n I
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22
(ioq n)(nh) 21.+B

CA (nh)-(log n), t-tl! + CB(n h-3 4(log n t-t l  . 3 .  t-t 1

where A =  K((t-Xi)/h)[!(Yi-m(t))-"'(Yi-m(tl))]

n

B = (Yi-m (t I))[K((tI-X i)/h)-K((t -xi)/h)],

and CA CB are Lipschitz bounds for ', m, K.

Since (3.4) follows from the well-known bias calculation

EHn(t) -h-(K((t-u)/h)E(:(y-m(t)) X=u)fx(u)du = O(h
2),

where O(h ) is independent of t (Parzen, 1962) we have from assumption (A2)

that 'EHn o((nh) (log n- 2 ).n

Statement (3.2) thus follows using tightness of Un (t) and the inequality

H 'H -EH '+ .EHn n n, n,

Statement (3.3) follows in the same way as (3.2) using assumption (A2)

and the continuity properties of K,4 ',m.

Finally from Hrdle and Luckhaus (1982), where uniform continuity of

I1n(t)-m(t) is shown, we have

,M F - O ((nh)-2(log n)2)

which implies (3.5)

Now the assertion of the lemma follows since by tightness of D n(t),

inf : n(t) -- qo and thus

1 Rn il = op ((nh)- (log n)-')(l + 11 f ).

Finally by Theorem 3.1 of Bickel and Rosenblatt (1973) l fn 1I = 0 p(1)

thus the desired result R I o ((nh)- 2 (log n)2) follows. In the nonrobust

case, i.e. i'(u) = u, the remainder term Rn reads

(3.6) Rn In x-nf+ E(nm n-mfn)/f x ,

where in (x) (nh)_l K((x-X)/h)Y..
i=l1 1
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Johnston (1982) proved that (ii n-E m n)/f has the desired asymptotic

distribution as stated in our Theorem.

So if we apply the recent result of Mack and Silverman (1982) or H~rdle

and Luckhaus (1982) to 1lm*-mI and the we'l known result from Bickel andn

Rosenblatt (1973) to jfx-fn1: we may conclude that the first term on the RHS

of (3.6) is o ((nh) 2(log n)- ). The second term in (3.6) is
p

[h-lfK((t-u)/h).m(u)f(u)du - m(t)h-lfK((t-u)/h)f(u)du]/fx(t)

which is by the same calculations as mentioned above (Parzen, 1962) of the

order O(h 2). This shows that our result generalizes Johnston's paper. Our

theorem says also that the confidence bounds are smaller. Johnston had

s (t) = E(Y2 1X=t) as a factor for the asymptotic confidence bound, we have22

2(t) = var(YIX=t) which is in general smaller than s 2(t). We now begin

with the subsequent approximations of the processes Yo,n to Y5,n"

Lemma 3.2:

S Y,nl,n O((nh)- (log n)2) a.s.

Proof: Let t be fixed and put L(y) = Y(y-m(t)) still depending on t.

Use integration by parts and obtain:

ffE (y)K((t-x)/h)dZ n(x,y)=

7n

A a
f fn L(y)K(u)dZn(t-h-u,y) =

u=-A y=-a n

A an A

f f Zn(t-h u,y)d[L(y)K(u)] + L(an)f Z n(t-h-u,an 'dK(u)
-A -an -A

A a
-L(-an)_fZn(t-h-u, -an)dK(u) + K(A)[ f Zn(t-h.u,y)dk(y)

A nZ-an

+L(a n)Z (t-h.A,a n)-L(-a n)Z n(t-h.A,-a n)]
nn

-K(-A)[ f Zn(t+h.A,y)dL(y) + L(an )Z n(t+h.A,a n)
-a

n
-L(-a )Z (t+h-A,-a

n n n~a)
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If we apply the same operations to Y with Bn(T(xy)) instead of Z (X,y)

and use Lemma 2.1 we finally obtain

sup hv q(tY !(t) - Y (t)' = 0((nh)-;'(loq n)2) a.s.I O,n l,n
0.t-I

using the differentiability and boundedness of ;.

Lemiama 3.3:

YI,n - Y2,n = p(h

Proof: Note that the Jacobi of T(x,y) is f(x,y) hence

Y Mn(t) - Y2 (t ) l= (q (t )h )- f : (y -m (t )K ((t -x )/h )f (x y )dx dy i '  W

n

It follows that

h- Yl ,n-Y2,n 1 iWn(l,l) 'I g-3211 sup h ff .(y-m(t))K((t-x)/h)if(x,y)dxdv
O t~l n'

Since 1 1 is bounded by assumption and is bounded we have
h-''I Y1 ,-Y2, !I -iWn(l ,1) " C4" h-lf(K((t-x)/h))dx = 0 (1).

Lemma 3.4:
Y Y,-Y3,, =0O(h )

2,n 3,n (h%

Proof: The difference IY 2,n(t-Y 3,n(t)I may be written as

I(q(t)h)-Ifl[ ,(Y-m(t) )- ,(Y-m(x )]K((t-x)/h)dW n(T(x,y))l

1'in

If we use the fact that q,m are uniformly continuous this is smaller than

h- 1q(t)j .Q p(h)

and the lemma thus follows.

Lemma 3.5:

IIY4,n-Y5,nl = Op (h )

Proof:

IY4,n(t)-Y5,n(t) I=  h- f {[ x - K((t-x)/h)dW(x)I 54, , 9t



-11-

h-A W(t-hu) ;[q(t-hu)

+ h 2IK(A)W(t-hA) {g(tAh)] -

" h- K(-A)W(t+hA){f[g(t+h)A) -l

Sl,n(t) + S 2,n(t) + S 3,n(t) ,say.

The second term can be estimated by

h- 11S 2 ,nl I < K(A)- sup IW(t-Ah)l. sup h-I {[ (t-Ah)] - lii

by the mean value theorem it follows that

h- 11 S2,nlI = OP (1).

The first term Sin is estimated as follows.

h-Sln(t) = h- f W(t-uh)1K'(u)([ (  du
-A g(t)-

A F(t-uh) ]-1 ' (t-uh) ]u
4 f W(t-uh)K(u)[ g(t) g(t) Iu

-A

ITl ,n (t) - T2 ,n (t) , say.

A 2
T2 ,n" 

-! C5  f AIW(t-hu)jdu = Op(1) by assumption on g(t) = a2(t)-f x(t).

To estimate Tl ,n '. again use the mean value theorem to conclude that

sup h- I[ )] - I ' < lul

hence
A

IT1 , n l < C6 ° sup f IW(t-hu)K'(u)uldu = 0 p(1).
nOt-<1 -A

Since S 3,n(t) is estimated as S2,n(t) we finally obtain the desired result.

The next lemma shows that the truncation introduced through {an I does not

affect the limiting distribution.
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Lemma 3.6:

Yn- Yo,nl l= Op ((log n) ).

Proof: We shall only show that g'(t)- h ff q(y-m(t))K((t-x)/h)dZn(x,y)

fulfills the lemma.

The replacement of q'(t) by g(t) may be proved as in Johnston (1982). The

quantity above is less than h ll f (y-m())K((-x)/h)dZ(x,y)ll
{IyI>a n}

It remains to show that the last factor tends to zero at a rate 0 ((log n) 
) .

p
We show first that

V (t) = (log n) h-  ff 4(y-m(t))K((t-x)/h)dZn(x,y)
{ yl>a}

Pn

_ 0 for all t

and then we show tightness of V (t), the result then follows.n

Vn(t) = (log n) (nh) -'2  { (Yi-m(t)I y  (Yi )K((t-Xi )/h)
n~ 1 {Iyl>an1

- E (Yi-m(t)).I { Yl>an (Yi)K((t-Xi)/h)}

n
i Xn,i(t)

where fX (t)}n= are iid for each n with EXn.(t) = 0 for all t [0,1].
nji i 1 nj,

We have then

E2  1 2 2EXn i(t) < (log n)(nh)- Ei, (Yi-m(t))I {jyj>a n(Yi )K ((t-Xi)/h)

< AuAsup 2(u).(log n)(nh)-l E 2 (Yi- m(t))I{jyj>an(Yi)
-A-u- An

hence
n

n2 2
var{Vn(t)} = E( I Xn i (t)) = nEX n,i(t)

5 sup K2(u)h' (log n) f f (y)dy.M
-A<_u!<A {Iyl>an } Y

where M denotes an upper bound for p2 .
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This term tends to zero by assumption (A3). Thus by Markov's inequality we

conclude that

V (t) " 0 for all t E [0,1].

To prove tightness of {V (t)} we refer again to the following moment condition

n
as stated in Lemma 3.1.

E{IVn(t) - Vn(tl). *Vn(t 2)Vn(t)L} C'.(t 2-tl)2

C' denoting a constant, t E [tl,t2].

We again estimate the left hand side by Schwarz's inequality and estimate each

factor separately. I
E[Vn (t)-Vn (tl)]2 = (log n)(nh) n(tt,Xi,Y)I

i=l n{lyl>a n)

- E(Yn (t,tl,Xi,Yi).I (vY))} 2  nn ii *i { IYI>an}

where 4 n(t,t I ,xi Yi
) = p(Yi-m(t))K((t-X i )/h)- (Yi-m(t l ))K( (t l-XJ)/h)

Since ,,m,K are Lipschitz continuous it follows

{E[V n(t)-V n(t0 )2

_ C7 - (log n) h- 3 / 2It-t 1I.{ f f y(y)dy}

{lYl>a n

If we apply the same estimations to V n(t 2)-Vn(tl) we finally have

E{IVn t-Vn(tl)I-IVn (t t} 2 C(log n)h- 3 t -t I I 2tn~ n 1 fial haveti : 7 1t2t

f f (y)dy
{lyI>a n I

C'-t 2-t1 1 2 since tE[tl,t 2]

by assumption (A3).

Lemma 3.7: Let A(K) = fK2(u)du and let {dn ) as in the theorem. Then

(26 log n) [I 13 ,nI /[X(K)] - dn]

has the !ame asymptotic distribution as

(2(s log n) [I1 Y 4 ,n II/ [X(K)] - dn]
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Proof: Y3,n (t) is a Gaussian process with

EY3,n (t) = 0

and covariance function

r 3(tilt 2) = EY3,n(ti)Y3,n(t2)

= [g(t 1)9(t2)1- %KlffljA(ym(x) )K((t,-x)/h)K( (t2 -x) /h)f(x,y)dxdy.

n

h K1 g(t ) 1-t)yfg(x)K((t1 x)/h)K((t2 x)/h) dx

4 2 4,n

proves the lemma.
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